Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 927: 172297, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38588736

RESUMO

Soil pollution by As and Hg is a pressing environmental issue given their persistence. The intricate removal processes and subsequent accumulation of these elements in soil adversely impact plant growth and pose risks to other organisms in the food chain and to underground aquifers. Here we assessed the effectiveness of non-toxic industrial byproducts, namely coal fly ash and steelmaking slag, as soil amendments, both independently and in conjunction with an organic fertilizer. This approach was coupled with a phytoremediation technique involving Betula pubescens to tackle soil highly contaminated. Greenhouse experiments were conducted to evaluate amendments' impact on the growth, physiology, and biochemistry of the plant. Additionally, a permeable barrier made of byproducts was placed beneath the soil to treat leachates. The application of the byproducts reduced pollutant availability, the production of contaminated leachates, and pollutant accumulation in plants, thereby promoting plant development and survival. Conversely, the addition of the fertilizer alone led to an increase in As accumulation in plants and induced the production of antioxidant compounds such as carotenoids and free proline. Notably, all amendments led to increased thiolic compound production without affecting chlorophyll synthesis. While fertilizer application significantly decreased parameters associated with oxidative stress, such as hydrogen peroxide and malondialdehyde, no substantial reduction was observed after byproduct application. Thermal desorption analysis of the byproducts revealed Hg immobilization mechanisms, thereby indicating retention of this metalloid in the form of Hg chloride. In summary, the revalorization of industrial byproducts in the context of the circular economy holds promise for effectively immobilizing metal(loid)s in heavily polluted soils. Additionally, this approach can be enhanced through synergies with phytoremediation.


Assuntos
Betula , Biodegradação Ambiental , Cinza de Carvão , Poluentes do Solo , Arsênio , Mercúrio , Mineração , Fertilizantes , Aço , Recuperação e Remediação Ambiental/métodos , Solo/química , Resíduos Industriais
2.
J Environ Manage ; 354: 120293, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387345

RESUMO

The recurrence and severity of wildfire is on the rise due to factors like global warming and human activities. Mediterranean regions are prone to significant wildfire events, which cause extensive damage to ecosystems and soil properties. This study focuses on the municipality of Allande in south-western Asturias (Spain), a region highly affected by recurrent wildfires. In this regard, we sought to examine how the recurrence of such fires influences soil organic carbon fractionation and other soil parameters, such as nitrogen fractionation, pH, and cation exchange capacity. The study involved six sampling plots with between varying fire recurrence levels, from 0 to 4 events between 2005 and 2022. The results revealed some significant effects of wildfires recurrence on soil texture, inorganic elemental composition and CEC, but not on pH and CE. In soil affected by recurrent fires, labile carbon fractions (cold-water extractable & hot-water extractable), and fulvic acid concentrations decreased by up to 36%, 5%, and 45%, respectively in comparison with undisturbed soil. In contrast, humic acid concentration remained stable or increased in soils damaged by fire. Additionally, nitrogen species in soil were observed to decrease significantly in high recurrence scenarios, especially nitrate. On the basis of our findings, we conclude that wildfires impact the distinct fractions of organic carbon and nitrogen in soils and that this effect is aggravated by increasing recurrence.


Assuntos
Incêndios , Incêndios Florestais , Humanos , Solo/química , Ecossistema , Florestas , Carbono/química , Água , Nitrogênio/análise
3.
Environ Pollut ; 333: 122066, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37343919

RESUMO

The combination of a low-density geochemical survey, multispectral data obtained with Unmanned Aerial Vehicle-Remote Sensing (UAV-RS), and a machine learning technique was tested in the search for a statistically robust prediction of contaminant distribution in soil and vegetation, for zones with a highly variable pollutant load. To this end, a novel methodology was devised by means of a limited geochemical study of topsoil and vegetation combined with multispectral data obtained by UAV-RS. The methodology was verified in an area affected by Hg and As contamination that typifies abandoned mining-metallurgy sites in recent decades. A broad selection of spectral indices were calculated to evaluate soil-plant system response, and four machine learning techniques (Multiple Linear Regression, Random Forest, Generalized Boosted Models, and Multivariate Adaptive Regression Spline) were tested to obtain robust statistical models. Random Forest (RF) provided the best non-biased models for As and Hg concentration in soil and vegetation, with R2 and rRMSE (%) ranging from 0.501 to 0.630 and from 180.72 to 46.31, respectively, and with acceptable values for RPD and RPIQ statistics. The prediction and mapping of contaminant content and distribution in the study area were well enough adjusted to the geochemical data and revealed superior accuracy for As than Hg, and for vegetation than topsoil. The results were more precise than those obtained in comparable studies that applied satellite or spectrometry data. In conclusion, the methodology presented emerges as a powerful tool for studies addressing soil and vegetation pollution and an alternative approach to classical geochemical studies, which are time-consuming and expensive.

4.
J Hazard Mater ; 433: 128748, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35405586

RESUMO

Zero valent iron nanoparticles (nZVI) attract interest given their effectiveness in soil remediation. However, little attention has been given to their impacts on plants. Likewise, although fertilizers are commonly used to enhance phytoremediation, their effects on As mobilization, resulting in potential toxic effects, require further study. In this context, we examined the impact of As and Hg accumulation on the antioxidative system of Medicago sativa grown in a soil amended with organic fertilizer and/or nZVI. The experiment consisted of 60 pots. Plants were pre-grown and transferred to pots, which were withdrawn along time for monitoring purposes. As and Hg were monitored in the soil-plant system, and parameters related to oxidative stress, photosynthetic pigments, and non-protein thiol compounds (NPTs) were measured. In general, the application of nZVI immobilized As in soil and increased Hg accumulation in the plant, although it surprisingly decreased oxidative stress. Plants in nZVI-treated soil also showed an increase in NPT content in roots. In contrast, the application of the fertilizer mobilized As, thereby improving bioaccumulation factors. However, when combining fertilizer with nZVI, the As accumulation is mitigated. This observation reveals that simultaneous amendments are a promising approach for soil stabilization and the phytomanagement of As/Hg-polluted soils.


Assuntos
Arsênio , Recuperação e Remediação Ambiental , Mercúrio , Nanopartículas , Poluentes do Solo , Antioxidantes , Arsênio/análise , Biodegradação Ambiental , Fertilizantes , Ferro/análise , Medicago sativa , Solo , Poluentes do Solo/análise
5.
Environ Sci Pollut Res Int ; 23(3): 2595-602, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26432263

RESUMO

One technique applied to restore degraded or contaminated soils is to use amendments made of different types of waste materials, which in turn may contain metals such as Cu, Pb and Zn. For this reason, it is important to determine the capacity of the soil to retain these materials, and to compare the sorption capacity between an amended soil and another unamended soil. The aim of this study was to determine the mobility and availability of these metals in the soil after applying the amendment, and how it affected the soil's sorption capacity. Sorption isotherms were compared with the empirical models of Langmuir and Freundlich to estimate the sorption capacity. The overall capacity of the soils to sorb Cu, Pb or Zn was evaluated as the slope Kr. The amendments used in this study were a mixture made of compost and biochar in different proportions (20, 40, 60, 100 %), which were applied to the mine tailing from a settling pond from a copper mine. The mine tailing that were amended with the mixture of compost and biochar had a higher sorption capacity than the mine tailing from the unamended pond, and their sorption isotherms had a greater affinity towards Cu, Pb and Zn than the mine tailing that was studied. Therefore, the results obtained show that adding a mixture of compost and biochar favours the retention of Cu, Pb and Zn in mine tailing.


Assuntos
Carvão Vegetal , Recuperação e Remediação Ambiental , Mineração , Poluentes do Solo , Solo , Absorção Fisico-Química , Cobre , Metais , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA